If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30y^2+60y=1050
We move all terms to the left:
30y^2+60y-(1050)=0
a = 30; b = 60; c = -1050;
Δ = b2-4ac
Δ = 602-4·30·(-1050)
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-360}{2*30}=\frac{-420}{60} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+360}{2*30}=\frac{300}{60} =5 $
| 12/n=10/15 | | 9-3y-9y=2 | | 3x=-4(5+7) | | 98.6-t=129.7 | | 3m-4=263m=m= | | X^2+18x+8=16 | | 60+5k=9k | | 2320x-4x^{2}-17300=0 | | x-130+x=1450 | | 3x+4=73x=x= | | x+75+x=925 | | 2t=8/12 | | (21/4)c=(39/4)c+44 | | 6k-8=11 | | 4y-5=154y=y= | | 8s-16=72 | | (1)/(3)p-8-p=4 | | 2y+21=37 | | x2+4x+1152=0 | | |4x+3|=|5x+6| | | 5a-40=31 | | 10k-6=24k= | | -8q+6=38 | | 0,5c+0,25=¾ | | 6t-50=-8 | | 5x2–9=4–2 | | 5t+4=34 | | 6y+15=63 | | f(3)=(3-24) | | f(3)=3(3(3)-24) | | 4-5|x+10=-26 | | 72=2×3.14×r^2 |